Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Seeing biomass recalcitrance through fluorescence.

Identifieur interne : 001206 ( Main/Exploration ); précédent : 001205; suivant : 001207

Seeing biomass recalcitrance through fluorescence.

Auteurs : Thomas Auxenfans [France] ; Christine Terryn [France] ; Gabriel Paës [France]

Source :

RBID : pubmed:28821835

Abstract

Lignocellulosic biomass is the only renewable carbon resource available in sufficient amount on Earth to go beyond the fossil-based carbon economy. Its transformation requires controlled breakdown of polymers into a set of molecules to make fuels, chemicals and materials. But biomass is a network of various inter-connected polymers which are very difficult to deconstruct optimally. In particular, saccharification potential of lignocellulosic biomass depends on several complex chemical and physical factors. For the first time, an easily measurable fluorescence properties of steam-exploded biomass samples from miscanthus, poplar and wheat straw was shown to be directly correlated to their saccharification potential. Fluorescence can thus be advantageously used as a predictive method of biomass saccharification. The loss in fluorescence occurring after the steam explosion pretreatment and increasing with pretreatment severity does not originate from the loss in lignin content, but rather from a decrease of the lignin β-aryl-ether linkage content. Fluorescence lifetime analysis demonstrates that monolignols making lignin become highly conjugated after steam explosion pretreatment. These results reveal that lignin chemical composition is a more important feature to consider than its content to understand and to predict biomass saccharification.

DOI: 10.1038/s41598-017-08740-1
PubMed: 28821835
PubMed Central: PMC5562871


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Seeing biomass recalcitrance through fluorescence.</title>
<author>
<name sortKey="Auxenfans, Thomas" sort="Auxenfans, Thomas" uniqKey="Auxenfans T" first="Thomas" last="Auxenfans">Thomas Auxenfans</name>
<affiliation wicri:level="3">
<nlm:affiliation>FARE laboratory, INRA, University of Reims Champagne-Ardenne, 2 esplanade Roland-Garros, 51100, Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>FARE laboratory, INRA, University of Reims Champagne-Ardenne, 2 esplanade Roland-Garros, 51100, Reims</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Terryn, Christine" sort="Terryn, Christine" uniqKey="Terryn C" first="Christine" last="Terryn">Christine Terryn</name>
<affiliation wicri:level="3">
<nlm:affiliation>PICT platform, University of Reims Champagne-Ardenne, 45 rue Cognacq-Jay, 51100, Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>PICT platform, University of Reims Champagne-Ardenne, 45 rue Cognacq-Jay, 51100, Reims</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Paes, Gabriel" sort="Paes, Gabriel" uniqKey="Paes G" first="Gabriel" last="Paës">Gabriel Paës</name>
<affiliation wicri:level="3">
<nlm:affiliation>FARE laboratory, INRA, University of Reims Champagne-Ardenne, 2 esplanade Roland-Garros, 51100, Reims, France. gabriel.paes@inra.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>FARE laboratory, INRA, University of Reims Champagne-Ardenne, 2 esplanade Roland-Garros, 51100, Reims</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28821835</idno>
<idno type="pmid">28821835</idno>
<idno type="doi">10.1038/s41598-017-08740-1</idno>
<idno type="pmc">PMC5562871</idno>
<idno type="wicri:Area/Main/Corpus">001196</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001196</idno>
<idno type="wicri:Area/Main/Curation">001196</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001196</idno>
<idno type="wicri:Area/Main/Exploration">001196</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Seeing biomass recalcitrance through fluorescence.</title>
<author>
<name sortKey="Auxenfans, Thomas" sort="Auxenfans, Thomas" uniqKey="Auxenfans T" first="Thomas" last="Auxenfans">Thomas Auxenfans</name>
<affiliation wicri:level="3">
<nlm:affiliation>FARE laboratory, INRA, University of Reims Champagne-Ardenne, 2 esplanade Roland-Garros, 51100, Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>FARE laboratory, INRA, University of Reims Champagne-Ardenne, 2 esplanade Roland-Garros, 51100, Reims</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Terryn, Christine" sort="Terryn, Christine" uniqKey="Terryn C" first="Christine" last="Terryn">Christine Terryn</name>
<affiliation wicri:level="3">
<nlm:affiliation>PICT platform, University of Reims Champagne-Ardenne, 45 rue Cognacq-Jay, 51100, Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>PICT platform, University of Reims Champagne-Ardenne, 45 rue Cognacq-Jay, 51100, Reims</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Paes, Gabriel" sort="Paes, Gabriel" uniqKey="Paes G" first="Gabriel" last="Paës">Gabriel Paës</name>
<affiliation wicri:level="3">
<nlm:affiliation>FARE laboratory, INRA, University of Reims Champagne-Ardenne, 2 esplanade Roland-Garros, 51100, Reims, France. gabriel.paes@inra.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>FARE laboratory, INRA, University of Reims Champagne-Ardenne, 2 esplanade Roland-Garros, 51100, Reims</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Lignocellulosic biomass is the only renewable carbon resource available in sufficient amount on Earth to go beyond the fossil-based carbon economy. Its transformation requires controlled breakdown of polymers into a set of molecules to make fuels, chemicals and materials. But biomass is a network of various inter-connected polymers which are very difficult to deconstruct optimally. In particular, saccharification potential of lignocellulosic biomass depends on several complex chemical and physical factors. For the first time, an easily measurable fluorescence properties of steam-exploded biomass samples from miscanthus, poplar and wheat straw was shown to be directly correlated to their saccharification potential. Fluorescence can thus be advantageously used as a predictive method of biomass saccharification. The loss in fluorescence occurring after the steam explosion pretreatment and increasing with pretreatment severity does not originate from the loss in lignin content, but rather from a decrease of the lignin β-aryl-ether linkage content. Fluorescence lifetime analysis demonstrates that monolignols making lignin become highly conjugated after steam explosion pretreatment. These results reveal that lignin chemical composition is a more important feature to consider than its content to understand and to predict biomass saccharification.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28821835</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>02</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>08</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Seeing biomass recalcitrance through fluorescence.</ArticleTitle>
<Pagination>
<MedlinePgn>8838</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-017-08740-1</ELocationID>
<Abstract>
<AbstractText>Lignocellulosic biomass is the only renewable carbon resource available in sufficient amount on Earth to go beyond the fossil-based carbon economy. Its transformation requires controlled breakdown of polymers into a set of molecules to make fuels, chemicals and materials. But biomass is a network of various inter-connected polymers which are very difficult to deconstruct optimally. In particular, saccharification potential of lignocellulosic biomass depends on several complex chemical and physical factors. For the first time, an easily measurable fluorescence properties of steam-exploded biomass samples from miscanthus, poplar and wheat straw was shown to be directly correlated to their saccharification potential. Fluorescence can thus be advantageously used as a predictive method of biomass saccharification. The loss in fluorescence occurring after the steam explosion pretreatment and increasing with pretreatment severity does not originate from the loss in lignin content, but rather from a decrease of the lignin β-aryl-ether linkage content. Fluorescence lifetime analysis demonstrates that monolignols making lignin become highly conjugated after steam explosion pretreatment. These results reveal that lignin chemical composition is a more important feature to consider than its content to understand and to predict biomass saccharification.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Auxenfans</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>FARE laboratory, INRA, University of Reims Champagne-Ardenne, 2 esplanade Roland-Garros, 51100, Reims, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Terryn</LastName>
<ForeName>Christine</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>PICT platform, University of Reims Champagne-Ardenne, 45 rue Cognacq-Jay, 51100, Reims, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Paës</LastName>
<ForeName>Gabriel</ForeName>
<Initials>G</Initials>
<Identifier Source="ORCID">0000-0003-0239-9716</Identifier>
<AffiliationInfo>
<Affiliation>FARE laboratory, INRA, University of Reims Champagne-Ardenne, 2 esplanade Roland-Garros, 51100, Reims, France. gabriel.paes@inra.fr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>08</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>03</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>07</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28821835</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-017-08740-1</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-017-08740-1</ArticleId>
<ArticleId IdType="pmc">PMC5562871</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biotechnol Bioeng. 2016 Mar;113(3):540-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26369903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2010 May 12;110(5):2641-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20356094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2010 Oct;6(10):724-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20852610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2015 Jun 18;8:85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26110018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Chem Biomol Eng. 2011;2:121-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22432613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2014 Oct;169:80-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25033327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2001 Apr 15;291(2):175-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11401292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ChemSusChem. 2015 Oct 26;8(20):3366-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26365899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2017 Feb 7;10 :36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28191037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Jun 28;7:11989</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27349324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Feb 9;315(5813):804-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17289988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2015 Jun;185:302-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25780906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2007 Apr;8(4):1236-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17341112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microsc. 2013 Aug;251(2):178-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23763341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2015 Jun;25:151-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26051036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Jun;13(3):305-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20097119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Photochem Photobiol B. 2006 Apr 3;83(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16406801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2016 Feb;37:190-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26775114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2016 Jan;199:49-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26321216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Aug 18;9(8):e103580</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25133818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2016 Jan;200:287-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26496218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2011 Feb;53(2):166-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21261813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2008 Jun;99(9):3817-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17826088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2014 Jul 03;19(7):9380-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24995923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Sep 27;8(9):e73523</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24086283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2010 Jan;169(1):106-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19747548</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Champagne-Ardenne</li>
<li>Grand Est</li>
</region>
<settlement>
<li>Reims</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Grand Est">
<name sortKey="Auxenfans, Thomas" sort="Auxenfans, Thomas" uniqKey="Auxenfans T" first="Thomas" last="Auxenfans">Thomas Auxenfans</name>
</region>
<name sortKey="Paes, Gabriel" sort="Paes, Gabriel" uniqKey="Paes G" first="Gabriel" last="Paës">Gabriel Paës</name>
<name sortKey="Terryn, Christine" sort="Terryn, Christine" uniqKey="Terryn C" first="Christine" last="Terryn">Christine Terryn</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001206 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001206 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28821835
   |texte=   Seeing biomass recalcitrance through fluorescence.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28821835" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020